

ONE COMPLETE SOFTWARE STACK.

ONE SOURCE FOR SERVER VIRTUALIZATION AND LINUX.

ONE CALL FOR SUPPORT.

Topic: The Xen of Virtualization on Linux

13th May 2008

Colorado Linux Users and Enthusiasts

What is virtualization?

A brief history of computing...

 Wirth's law: Software gets slower faster than hardware gets faster

2. ...

3. . .

1. Wirth's law: Software gets slower faster than hardware gets faster: "What Grove giveth, Gates taketh away"

2. ...

3. . . .

- 1. ...
- Everything in computing can be solved by adding another layer of indirection (/ abstraction)
- 3. . . .

- 1. ...
- 2. . . .
- 3. There's nothing new in computing that IBM didn't already invent 30 (40, 50) years ago

Three immutable laws of computing -- or are they (immutable?)

- 1. Software gets slower faster than hardware gets faster, aka "What Grove giveth, Gates taketh away"
- 2. Everything in computing can be solved by adding another layer of indirection (/ abstraction)
- 3. There's nothing new in computing that IBM didn't already invent 30 (40, 50) years ago


```
ŨF d:
         COMMUNICATIONS DIVISION DISPATCH QUERY SCREEN
OVR NAM/
                                   ∍QA ENO/
                                                                 .DOB/
ÕHAR NAH∕
                                   ∍DQ.SSN/
                                                          .0LS/
ÓCHIS NAMZ
                                    ▶D0.OLN/
                                                      .LIS/
óe nam/
                                    ▶0V.LIC/
QPT NAM/
                                    ▶R0.LIC/
▶ÕPT ENO/
                                   ∍QVH VINZ
                                   ▶QVH LIC/
```


User Program 1

Oerating System 1

Virtual 370

User Program n

Operating System n

Virtual 370

VM370

Hardware

VIRTUAL MACHINE ARCHITECTURE (VM370)


```
Microsoft(R) Windows DOS
(C)Copyright Microsoft Corp 1990-2001.

C:\>mem

655360 bytes total conventional memory
655360 bytes available to MS-DOS
578352 largest executable program size

4194304 bytes total EMS memory
4194304 bytes free EMS memory
19922944 bytes total contiguous extended memory
0 bytes available contiguous extended memory
15580160 bytes available XMS memory
MS-DOS resident in High Memory Area

C:\>
```

Would you have invested?

Microsoft Corporation, 1978

Windows

A fatal exception 0E has occurred at 0028:C0011E36 in UXD UMM(01) + 00010E36. The current application will be terminated.

- * Press any key to terminate the current application.
- Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue _

Windows

A fatal exception 0E has occurred at 0028:C0011E36 in UXD UMM(01) + 00010E36. The current application will be terminated.

- * Press any key to terminate the current application.
- Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue _

AT&T/USL

SCO

STORAGE

Overview: Virtualization Technology

Defining Virtualization

- Abstraction of underlying technology
 - Decouple workloads from resource boundaries
- Benefit:
 - Increased agility in matching resources to the changing needs of your workload:
 - Performance
 - Availability
 - Security
 - Stability

Server Virtualization Technologies

Host OS-based, e.g.

- VMware Workstation
- Microsoft Virtual Server

- Primarily desktop
- Easy to use
- Very slow (2 OSes)

Hardware Partitioning, e.g.

- Sun SPARC Domains
- IBM PPARs
- •HP nPARs

OS Partitioning, e.g.

- Solaris Containers
- AIX dLPARs
- •HP vPARs

Hypervisor-based, e.g.

- Oracle VM
- VMware ESX Server
- Citrix XenServer
- Windows Hyper-V

- Expensive, proprietary hw
- Coarse grain resources
- Mix OSes / versions

- Only moderate isolation
- Potentially good scalability
- Fine-grained resources
- Cannot mix OS/patch levels
 Mix OSes / versions
- Excellent isolation
- Affordable, multi-source hw
- Fine-grained resources

"Hypervisor" Vs. "Virtualization Server"?

- Terms commonly used interchangeably but actually technically distinct:
 - A hypervisor is a very low-level, very efficient platform code layer that allows multiple operating systems to run on a host computer at the same time
 - Fundamental abstraction of physical <u>compute</u> resources
 - <u>I/O resources</u> may- (VMware) or may not (Xen) be handled by the hypervisor itself
 - Allows resource (re)allocation between VMs without disruption
 - A *virtualization server* includes a hypervisor function but also includes additional functionality, e.g.
 - I/O resource/traffic management (Xen)
 - Server configuration, access, and security management, etc.

Hardware Support for Virtualization (HVM) Where does it fit-in?

- Goal: efficiently insure VM OSes are not "hurting" each other
 - E.g. Trying to unsafely modify common resources/state, etc.

Techniques:	Purpose:	Benefits:	Comments:
Paravirtualization (PV) e.g. Oracle VM & Xen	Modify the OS and/or drivers so they knows how to behave in a virtual environment	Good-to-excellent performance vs. bare-metal	 PV OS kernel req'd (but rapidly not an issue)
Emulation / translation, e.g. VMware ESX	Design the virtualization server to intercept or "trap" harmful requests and/or translate requests into appropriate forms	 Use unmodified OS HVM hardware not req'd (but rapidly not an issue) 	Poor scalability esp. under I/O load
Hardware virtualization (HVM); e.g. Oracle VM & Xen	Design the hardware so it knows how to handle inappropriate requests itself. (Note: PV drivers can be used with an otherwise unmodified OS, e.g. Windows, to improve performance)	Use unmodified OS	 Poor perf. today HVM hardware req'd (but rapidly not an issue)

Anatomy of a Virtualization Server

Emulation-based, e.g.

VMware ESX Server

- Machine images run unmodified: broad compatibility
- Does not leverage or require HV hardware
- Poor I/O scalability due to emulation architecture
- Not open: dependent on virt, vendor for drivers

Paravirtualization (PV)-based, e.g.

- Oracle VM
- Citrix XenServer

- · Excellent scalability, esp. I/O with PV guests
- Requires PV OS kernel for best perf.
- Requires HV hardware for unmodified images
- Open: wide device support: uses native (e.g. Linux) device drivers

Anatomy of an Oracle VM Server Key Concepts: Dom0 & DomU

 "Dom0" is a privileged management and control domain typically containing...

 A thin control kernel based on Oracle Enterprise Linux

Open / native Linux device drivers XMLrpc

Oracle VM Manager agent

 Device emulation code to support non-PV guests (e.g. Windows)

- Dom0 should not contain 'user' applications as a best practice
 - Minimize performance & security risks
 - Minimize code size
- "DomU" is an unprivileged/user domain that is a guest VM on the server
 - · Run any normal server workload
 - One domU is not aware of another

Anatomy of an Oracle VM Server Key Concepts: Driver Architecture: PV

- For PV guests, driver abstraction:
 - Replaces hardware-specific drivers
 - One network driver
 - One block driver
 - Very stable / rarely changes
 - Excellent guest stability
 - Front-end drivers (net & block)
 - Inside the VM / domU OS
 - Back-end drivers (net & block)
 - In dom0 / shared
 - Open, native hardware vendor drivers
 - Uses open Linux drivers
- Virtualization server manages highperformance communication front <-> back
 - Can leverage dom0 kernel security features, e.g. packet sniffing, firewalling, & rate control, etc.

Anatomy of an Oracle VM Server Key Concepts: Driver Architecture: HVM

- HVM guests driver choices:
 - Unmodified native driver(s)
 - OS typically installs basic native network and block drivers that come with the OS (not with the virtualization server)
 - Device support provided via device emulation / translation in the virtualization server on top of net- & block-back drivers in dom0
 - Slower than PV due to overhead
 - PV drivers (front- & back)
 - HVM (unmodified) kernels can use PV drivers
 - Leverages PV driver stack same as previously described
 - Excellent performance

Oracle's Virtualization Platform: Oracle VM

Oracle Grid-Based Computing A History in Virtualization

- Grid-Based Storage
 - Oracle Automatic Storage Management
- Grid-Based Server Clusters
 - Oracle Database
 - Oracle Middleware
- Grid-Based Management
 - Oracle Enterprise Manager Grid Control

Oracle VM

- Oracle tested and supported server virtualization
- Maximizes consolidation of Linux and Windows servers
- Saves on power, cooling and space
- Improves operational agility through the lifecycle

Oracle VM

- Server virtualization software and support
 - Enterprise-class hypervisor
 - Free product download; low-cost support
- Runs both Linux and Windows Guests
 - Paravirtualized and hardware virtualized guests
 - HV on x86 hardware with HVM support
 - 64-bit and 32-bit guests
 - Up to 64-way SMP hardware
 - Up to 32 virtual processors per guest
 - Includes Live Migration at no additional cost
 - Integrated, browser-based management console
 - Free downloadable VM images

Enterprise-quality support worldwide

Oracle VM

Oracle VM Features

- Simplified installation
 - Single CD server installation
 - Installs and configures in a minute
- Faster stack deployment
 - Pre-configured Virtual Machine images of Oracle Database and Oracle Enterprise Linux
- Live VM migration included
 - Better uptime, agility, and HA
- Linux and Windows guest support
 - Oracle Enterprise Linux 4 and 5;
 - RHEL3, RHEL4 and RHEL5
 - On HV capable hardware: Windows 2000, Windows 2003, Windows Server 2003 (32- and 64bit) and Windows XP

Oracle VM Manager

- Browser-based management solution
- Included with Oracle VM
- Full VM lifecycle management:
 - Create
 - Configure
 - Clone
 - Share
 - Boot
 - Migrate

Oracle Product Certification with Oracle VM

- Oracle Database
- Oracle Application Server
- Oracle Enterprise Manager
- Oracle Berkeley DB
- Oracle TimesTen
- Oracle E-Business Suite
- Oracle PeopleSoft
- Oracle Siebel
- Oracle Hyperion
- More information on Metalink Note 464754.1

Partner Support

Oracle's Contributions

- Enhanced and optimized Xen technology
 - I/O overhead
 - Memory overhead
 - Process Scheduling
- Community involvement
 - Dedicated Xen development team
 - Code and bug fix contributions to Xen community
 - Members of Xen community at Oracle
 - Member of XenSummit committee
- Significant testing
 - Real-world testing with Oracle On Demand workloads
 - Testing with Oracle Validated configuration workloads

Performance Testing

- Extensive real-world testing
 - LMbench: microbenchmarking
 - Context switching, Null calls, TCP Selects, etc.
 - Swingbench: DB workload benchmarking
 - Typical OLTP workloads
 - Varying SGA size, # of users, # of vCPUs
 - Paravirtualized domains with Enterprise Linux 4, 64bit
- Results:
 - On average three times less overhead compared server virtualization products from other vendors.
 - Virtual SMP scalability of Oracle VM is at 90+%
- Small workloads are at same performance as real hardware

One Support Call for the Complete Stack

Summary

Oracle Uniquely Combines

- Proven Grid capabilities
- Server virtualization

Full Virtualization Strategy

- Applications
- Data
- Servers
- Storage

Real-World Benefits

- Maximized consolidation
- Optimized agility
- High availability
- Affordable enterprise-class support

Resources

- Virtualization Center on OTN
 otn.oracle.com/goto/virtualization
 - wiki, downloads, discussion forum, howtos
- Oracle VM Home Page oracle.com/virtualization

 Free Download: Oracle VM edelivery.oracle.com/oraclevm

